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The first attempt to extend the Liapnnov theorems on stability in the first approximation to 
the case of stochastic systems, was made in [I]. Special assumptions on the character of 
random effects were made in order to show that the complete system is stable in some prob- 
abilistic sense, if the linearized s 
Similar conclusion was reached in 2 and 31 for the processes defined by a system of stoch- t 

stem is exponentially stable in the quadratic mean. 

astic differential equations in the sense of Ito. In [4] it was shown that for the theorem of 
stability in the first approximation to hold, it is sufficient that the linearized system has 
exponentially stable momenta of some positive degree p. The present paper shows that the 

moments of sufficiently small positive power are stable, whenever the linear system shows 
an asymptotic, almost sure stability uniform in t. Sufficient conditions of instability in the 

first approximation are also given. 

e.g.t[5{ollowing 12 to 41, we shal1 investigate the system of Ito stochastic equations (see 

(ix(t) = b(f, X)dt + i: q(t) -+-E,(t) (1.1) 
r=l 

Here X(t), b (t, r) and O, (t, Z) are vectors belonging to an Z-dimensional Euclidean 
space EL , while e,(t) are independent Wiener processes. We shall denote by X *eX(c) a sol- 
ution of this system satisfying the initial condition X *#X(S) = x. 

In addition to (l.l), we shall consider a linear stochastic system 

dX (t) = BXdt + i o,X d& (t) (1.2) 
r=1 

and we shall assume at first, that the square, I-th order matrices E, o r,,.,, or are constant. 

Theorem 1.1. If the relation 

P{~Xs~X(t)~40(t400)}=1 (1.3) 

holds for a solution of a linear stochastic system with constant coefficients (1.2), then 
this system is exponentially p-stable for all sufficiently small, positive values of p. 

Three lemmas which follow, will yield the proof of this theorem. 

L emm a 1.1. If condition (1.3) holds, then such p > 0 can be found, that 

suplsl=lM {SUPr,, I X”* x (q I”> < 00 (1.4) 
Pro o f. Let Xi(:) be a solution of (1.2) determined by the initial condition X,(j)(s) = 6,i, 

where 6*) is the Kronecker delta. Than, by the linearity of (1.2) and uniqueness of its sol- 

ution, we obtain 
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X”*“(t) == i x*“*(t) 
i=l 

where x1,..., zl are the coordinates of the vector r. 
From (1.3) it follows that P (maxt supl>$ 1 X,(t) f < M) = 1. Therefore we have, for 

some constant k > 0, 

P (maxjsupt,, I Xj 0) I < kl> 112 
which, together with the obvious inequality 

1 

(i-5) 

yields 

suPlXf<(:(kf)-’ p ISUPt,,I XSY “it) I> 1) *f ‘/T 

Further, by the linearity of (1.2) we have 

xs*yx (t) = y X8$” (t) (1.6) 

hence at any k we have, for cr. = log, (k~), 

SUP IXi<2k@ p @upt>a J xs’“(t) f > 2a@-tlJ) < ‘I2 (1.7) 

Since the Markov process defined by (1.2) is homogeneous in time, the probability term 
appearing in the left-hand side of the inequality (1.7) is independent of s. 

Let us denote, by ~‘t*, the instant when the trajectory of the process reaches the set 
1 5 I= 2” for the first time. Using the strictly Markov property (see 161) of the process 

X “e”(t) and (1.7) , we obtain the inequalities 

sup,X,-st I’ {Supr>sl X”, * tt) I> P} = 
co 

. . . . . . . . . . ..~......*.........*..f..* 

SUPIXJ<l p (s”Pt>s I xs* “(t) I> 2”“}< -$ (1.8) 

which prove the Lemma for p < l/a, since when Ix1 = 1, 

Lemma 1.2. If condition (1.3) holds then we have, for p < I/U, 

supf,l,t M 1 x”+(t) jp - 0 P--,=J) (f.9) 

Proof of this Lemma follows immediately from (1.3) and (1.4), together with the Lebesgue 
theorem {see [?I). 

The Lemma which follows, is analogous to Theorem 6.1 of [l], where only the case of 
p = 2 was considered. 

Lemma 1.3. If the relation (1.9) holds for a linear system with constant coefficients, 
then this system is exponentially p-stable in the sense of (41, i.e. for some constants A and 
CL and for all s and z, the relation 

M 1 _p r (q lP < A 1 x jP;-w-s) (1.10) 

holds. 

Pro o f. From Lemma 1.2 it follows that for any Q < 1 such Z: can be found, that 
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~up,,~,~M I~"~x(~+~flp<Q 
Putting Q = e -1 and taking (1.6) into account, we can write the last relation in the form 

M1Xs~S(s+Z)IPfe-lI.Ip (i.li) 

Further we have 

MIX S,5 (s + 2,~) IP= 5 P {Xs2”(s + z) E dy) M 1 Xs+r,u(s + 2%) Ip< 

*..*.......,.........* 

M 1 xs. X(s + kz) IP <G-h‘ 1 z IP (1.12) 

Let 

t = s + nt + t1 (0 < fl < T), K = suPr>s,l~j=~ M I A?** (t) 1” 

Here k < CO by virtue of Lemma 1.1. Then, taking into account (1.12) and (1.6) we ob- 
tain 

< KM 1 X8* ‘(s + no) Ip < k 1 x IPewn < Ke:l z IJ’ exp {+z) 

which proves both, Lemma 1.3 and Theorem 1.1. 

Inspecting an example of a deterministic system given by dx/dt = - x/k + 1) we see 

that the Theorem 1.1 cannot, generally, bt applied to the systems with time-dependent co- 

efficients. If however the condition (1.3) holds uniformly in some sense, then the analogous 

theorem is true. 

Theorem 1.2. If, for solutions of the following linear stochastic system: 

dX (t) = B(t) X dt + i rsr (t) XdE, (t) (2.13) 
f=l 

condition 

sup.>0 p BUPu>s+T 1 P 2 (u) I> 81 --+ 0 (T-,c=) (1.14) 

holds for every E > 0, then this system is exponentially p-stable for all, sufficiently 

small and positive values of p. 
The proof of this Theorem is analogous to that of Theorem 1.1. 

N o t e. If the process is homogeneous in time, then the conditions (1.14) and (1.3) are 

equivalent. This follows from the equivalence of events 

A = {X”qt) h 0 (t 4 oo)], 

and the resulting equality 

P (A) = lim,,m link+, P {supu,fl 1 X ‘* x (u) i > 1 /m> 

Therefore Theorem 1.2 is indeed a generalization of the Theorem 1.1, extending to the 

case inhomogeneous with respect to time. 
Comparing the Theorems 1.1 and 1.2 together with the Theorem 4.1 from [4], we obtain 

the following assertion: 

Theorem 1.3. Let the &near system (1.131 be uniformly and asymptotically stable 

in the sense of (1.14) and let the elements of the matrices B (t) and cr,(tl be bounded. Then 
the solution X (t) = 0 of (1.1) is almost surely stable for all systems whose coefficients ad- 

mit the validity of the estimate 
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sufficiently near the point x = 0 and with sufficiently small constant y. 

2. Next we shall consider the following question: under what conditions the instability 

of the linearized system implies the instability of the complete system. We can see from the 
example‘ which follows, that the situation is more complex. As it is shown in [8], a one- 
dimensional system 

dX (t) = (1 - E) x ‘0% + l/z: x dEJ (Q 

is stable for any E > 0, and unstable when 8 = 0. This implies that the instability of 
a linear stochastic system does not necessarily imply the instability of a system close to 
it in the sense of (l.lS), no matter how amall is the constant Y. We shall nevertheless 
show, that the analog of the Theorem 1.3 is valid when the linear system exhibits suffici- 
ently strong instability. 

We shall first define the exponential q-instability, analogous to the definition of the ex- 
ponential p-stability given by (1.10). 

The solution X(L) m 0 of (1.1) shall be called exponentialfy q-unstable fq > 0) if the 
condition 

M 1 X”? cx (t) 1-q < A 15 1” e-@-@ 

holds for some A and a > 0. 
(2.4) 

Theorem 2.1. The solutionX(r)a 0 of (1.13) is exponentially q-unstable if and only 
if a function ‘v (t, z) homogeneous in z and of the order - q exists, which satisfies the con- 
ditions (k, > 0): 

(2.2) 
t-=1 

I 1 g- < k, \ z \-g-” ) / g& I< k* 15 j- 
1 3 

where ‘7, as usual, denotes a vector with coordinates J/&r. Proof of this Theorem is ana- 
logous to that of the Theorem 4.1 in [S]. 

Theorem 2.2. If the solution X(t) m 0 of (1.13) with bounded coefficients is exponen- 

tially q-unstable, then it is almost surely unstable for all systems of the form (1.1) the co- 
efficients of which admit, in sufficiently small neighborhood of the point x = 0, estimates 
(1.15) with sufficiently small y_ 

Proof. Let Y satisfy (2.2). As we know, the differential generator of the system (1.1) 
has the form 

1; 

L-= $ + (b (t, z), V) -I- + 2 (Or (t, 2), v)B 

T==l 

which, together with (l.lS) and (2.2) yields in sufficiently small neighborhood of x = 0 the 
estimate 

k 

+ or (t) E, V) P < - ka j ~z1 [-q + r 1 x / kj 1 z /-4-L + TC 1 x /-q (2.3) 

where the constant c depends on k, and on the upper bound of the moduli of the coefficients 
of (1.13). From (2.3) it follows that with suitable choice of y > 0, the estimate LY < 0 
when 1x1 <e. 

. . . 
Since, in addition, tnfr,,, V (t, 5) -+ 00 as x -+ 0 we obtain, applying the Theorem 2.3 

from [8], the required proof (Theorem 2.3 from [81 is proved for the case homogeneous in 
time and nondegenerate diffusion. This limitation can however be easiIy removed by using 
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in the course of the proof, the methods of the theory of stochastic differential 

see e.g. [3 and 411, 

equations, 

Note: We have remarked in [8] that the existence of a Liapunov function possessing 

the properties given in this paper, can lead to a stronger assertion than that of negating 
the almost sure stability. We can in fact say that, when the condition of Theorem 2.2 holds 
for any s > 0 and x, the event {X **Q) -, 0 as t +d has zero probability. 

Inspecting Theorem 2.1 we easily see that the deterministic linear system with constant 
coefficients is q-unstable if the reai parts of all the roots of the characteristic equation 
are positive, i.e. if the modulus of any solution except the trivial x 3 0 tends to infinity as 

t + CO, An analogous statement is true for stochastic systems. 

Theorem 2.3. If the relation 

P~fXS~r(t)~400(t4~))=I (2.4) 

holds for solutions of the linear system (1.21 with constant coefficients when z f 0, then 
this system is exponentially q-unstable for all sufficiently small q > 0. This statement is 
also true*for the systems with variable coefficients (1.131, if the condition (2.41 is replaced 
by the condion: 

SuP~>op {i&++T 1 X”* x (u) I< A} --+ 0 when T + 00 (2.5) 

foranyA>OandxfO. 

Proof of this Theorem is almost identical to those of Theorems 1.1 and 1.2. 
From Theorems 2.2 and 2.3 we obtain: 

Theorem 244. If the solutions of the linear system (1.131 (of the system (1.211 satis- 

fy the condition (2.5) (the condition (2.411 and elements of the matrices B, it ,..., u,t are 
bounded, then the solution X (tl= 0 of (1.1) is almost surely unstable for all systems whose 
coefficients allow, in a sufficiently small neighborhood of the point x = 0, the estimate 
(1.151 with sufficiently small y. 

3. The conditions of validity of the Theorem on instability in the first approximation 
obtained in Section 2, can be improved. Let us consider, in particular, a one-dimensional 
system 

dX (t) = b (t, X) dt + CJ (t, X) d E (t) 

for which the corresponding linearized system 

dX (t) = b, x dt + ET, x d E (t) 

(3.1) 

has constant coefficients. When b, < ao2 / 2. 

> co2 / 2 t 

we can apply Theorem 1.3, while when b. > 
we csn apply Theorem 2.4, When 6, = oo2 / 2, the linear system is unstable 

but it is not asymptotically q-unstable for any q > 0. As we said before, in the latter case 

Theorem 2.4 on instability in the first approximation breaks down. If, however, we require 
that the differences b (t, 2) - bu x and a (t, xl - tiux become infinitesimals of sufficiently 
high order when x + 0 we find, that in this case the solution of (3.1) is still unstable. 

Indeed, let us assume that bo = ~,,a / 2 and that 

jb (6 2) - boz 1 + 1 ff (t, Lc) - CT@ 1 < c 1 2 p-i= (3.2) 

holds for some c > 0 and a> 0. 

Let us consider au auxilliary function V(z) = In ln(l/l ~1). A simple check shows that in 
this case V +CXJ as x + 0 and L V < 0 in a sufficiently *mall neighborhood of the coordinate 
origin. 

Instability of the system (3.11 when b, = coo” / 2 and (3.21 follows from the Theorem 
2.3 of f8]. 

A question whether an extension of this result to the multi-dimensional case is true, is 
of interest. Another question arises in this connection: is it not enough to require in the 
statements of Theorems 2.3 and 2.4 that conditions (2.4) and (2.51 hold for any single value 
of r ? We know that this is possible in the case of deterministic systems. Results of [9] im- 
ply that it is indeed possible also for stochastic systems provided that the linearized system 
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has constant coefficients and that its diffusion matrix is nondegenerate in the sense that 

*&6& ??>Q (3.3) 

for all vectors z and x which are not null vecrors. If, on the other hand, the condition (3.3) 

is not fulfilled, then we can find an example showing that such au improvement cannot, 
generally speaking, take place. It is however highly probable, that such an improvement 
can be made if the condition (1.15) is replaced in the statements of the above Theorems 
with another condition of the type (3.21. 

In conclusion the author thanks I.Ia. Kats for helpful comments. 
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